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Recall: Supervised Machine Learning Workflow 
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Multiclass and Multilabel Classification

In Multiclass Classification, we have more than 2 labels, and our task is to assign a single 
label to each sample:

In Multilabel Classification, we have more than 2 labels, and our task is to assign any 
appropriate labels (not just one):

Let's look at an example of multiclass classification, using the MNIST handwritten digits 
database....



Binary Classification
Example:  Spam or Not Spam?

Labels:    1 = Spam    0 = Not Spam

Notice that this data set is fairly well balanced:    
     
             51% Spam  vs.   49% Not Spam



Multiclass Classification
The well-known MNIST dataset of handwritten digits is a classic multiclass problem. 



Multiclass Classification
The MNIST digit database consists of 70,000 28x28 BW pixel images, stored as 28*28=784 
floating-point numbers in the range [0..1];  labels are integers 0..9: 

Note that the 
array is sparse, 
it is mostly 0's.

Etc.



Multilabel Classification
Multilabel classification is a very important problem in medical diagnosis and object 
recognition in images:



Evaluation of Classifiers: “It’s complicated!”

Precise evaluation of classifier performance is complex, even for 
the simplest case of binary classification:

We have four different outcomes for predictions:

True Label              Prediction            Type of Outcome
    Dog                         Dog                 True Positive    (TP)
    Not Dog                  Not Dog          True Negative  (TN)
    Dog                         Not Dog          False Negative (FN)   [Type II error]
    Not Dog                  Dog                 False Positive   (FP)   [Type I error]

Intuitively, these make good sense:

o Accuracy is the percentage of all predictions 
which were correct;

o Precision is the percentage 
of positive predictions which were correct;

o Sensitivity (or Recall or "true positive rate") is 
the percentage of the actual positives identified 
correctly; and

o Specificity (or "true negative rate") is the 
percentage of the actual negatives identified 
correctly.



Evaluation of Binary Classifiers (still complicated!)

o If positive = the patient has cancer, then a FN is disasterous, since you have missed 
diagnosing a deadly disease, so we want to increase sensitivity;

o If positive = the patient does NOT have cancer, then a FP is disasterous, since again you 
have missed diagnosing a deadly disease, so we want to increase precision;

o If you are querying a database of documents, and positive = document retrieved, and you 
want to retrieve all possible documents, then you need to increase recall (hence the name);

Precision and recall often in conflict: increasing one will decrease the other; therefore a 
composite measure is often used, the "harmonic mean" of prediction and recall, which attempts 
to equalize the error between these two:

For a very complete listing of metrics for confusion matrices, see:
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)

The idea of accuracy is fairly straight-forward: how many 
did it get correct?  This is the most common in NLP. 

However, the others are useful in many circumstances 
where the cost of errors may be unacceptable:

https://en.wikipedia.org/wiki/Precision_and_recall


But even accuracy is not that simple!

Consider two classifiers with accuracy metrics as follows:

         A.    Accuracy of 4-way classification of blobs:    90%

         B.    Accuracy of 10-way classification of digits:   85%

Which is the more accurate classifier?

Evaluation of Binary Classifiers (still complicated!)



Consider two classifiers with accuracy metrics as follows:

        A.   Accuracy of 4-way classification of blobs:    90%

        B.   Accuracy of 10-way classification of digits:   85%

Which is the more accurate classifier?

Answer 1:   90% >  85%            A is more accurate

But wait!  A baseline classifier which chooses randomly gets 

           25% accuracy for A    and        10%  accuracy for B       !!

[ Assuming equal distribution of classes – else it is the percentage of biggest class. ] 

Punchline:   

           Always compare your model with a suitable baseline model, 
           for example a random model which always chooses the largest class. 

Alternately: Your 
baseline model is 
your model before 
training, assuming 
parameters are 
initialized randomly. 

Evaluation of Binary Classifiers (still complicated!)



Example:     Suppose you get the following results:

        A.   Accuracy of 4-way classification of blobs:    90%
        B.   Accuracy of 10-way classification of digits:   85%

Ok, how to precisely compare a baseline model?

Answer 2 (most common in ML):  Measure improvement above baseline:

         A improves on random (25%) by +65%; 
         B improves on random (10%) by +75%,          so B is a better model. 

Answer 3:   Measure improvement normalized to inaccuracy of baseline model:

          
          Cohen’s Kappa:     

Now A wins:          k(A) = 

Evaluation of Binary Classifiers (still complicated!)



Which is correct?  Well, "it depends"!    Statisticians have been arguing about the right way 
to do this for at least a century, here is a recent paper which compares the principal 
methods:

ML people seem to like the simplicity of Answer 2 :  percent improvement over baseline 
model which always chooses the largest class.  

Evaluation of Binary Classifiers (still complicated!)



Quick Check:

           Suppose you have a spam/not spam binary classification task, but
           your data set is heavily unbalanced:  30% is spam, and 70% is not spam. 

           You train two different models, A gets 88% accuracy and B gets 92%.

            How much better is B than A?

Evaluation of Binary Classifiers (still complicated!)



Quick Check:

           Suppose you have a spam/not spam binary classification task, but
           your data set is heavily unbalanced:  30% is spam, and 70% is not spam. 

           You train two different models, A gets 88% accuracy and B gets 92%.

            How much better is B than A?

            A baseline model would simply say that all samples are not spam, and 
            would have 70% accuracy. 

            Standard answer:   B is 22% above the baseline, and A is 18% above. 

            This doesn't sound that great, compared with 92% for your best model!

            You can also see why balanced data sets are preferred!

Evaluation of Binary Classifiers (still complicated!)



Large Confusion Matrices

If you are doing multiclass classification, you can extend the confusion matrix to have as 
many rows and columns as the number of classes.  

Here is a simple example of a large Confusion Matrix showing how two strings match up 
(as if each character were a label!):

Evaluation of Multiclass Classifiers (yup,  complicated!)

The same measures are used as 
in binary classification:

Accuracy = % correct

Sensitivity and specificity are 
the average for each row.

Recall and NPV are the 
average for each column. 



Large Confusion Matrices

These displays can help you to understand your data and how your model is performing 
with respect to individual samples.

Here is a confusion matrix for the MNIST digit-recognition task:

Evaluation of Multiclass Classifiers (yup,  complicated!)



Generalization and Overfitting
Generalization – the ability of a NN to learn the patterns in a data set so 
as to perform well on data it has never seen – is the most important goal 
in developing deep learning models. 

The problem is overfitting – the NN is starting to "memorize" the training 
set without learning the most important patterns which characterize the 
essential information present in the data. 

Overfitting can be seen when the training loss goes down, but the validation 
loss goes up. In general, you will see the validation accuracy peak at some 
epoch and then goes down (generally not as noticably as the rise in the 
validation loss): 



The problem is that a NN can learn ANY data set you give it, essentially by 
memorizing the exact training set. Here is a dramatic example: we randomly 
permute the labels, so that there is no correspondence between data and labels.
The model continues to "learn" the training set, but the validation accuracy remains 
around the baseline of 10%. 

Generalization: Overfitting



Generalization: Overfitting
Overfitting is often due to data which is

o Noisy (non-data,  ambigious, or outliers)
o Mislabeled
o Or has rare features or spurious correlations.  

Noisy Data in MNIST:                                        Mislabeled data in MNIST:



Generalization: Overfitting
Overfitting is often due to data which is

o Noisy (non-data,  ambigious, or outliers)
o Mislabeled
o Or has rare features or spurious correlations. 

Rare features 

If your data contains "one-off" features (e.g., a "Getty Images" logo in one image, or 
a unique or misspelled word in an email), the NN will learn to associate that feature 
with its label – it is overfitting!

Spurious Correlations

This is actually worse—and more common—than rare features. A word may occur 
100s of time in movie reviews, but by a statistical fluke, it occurs in 58% of the 
positive reviews, and 42% of the negative reviews. The NN will give this word 
undue weight in learning the data set, and it won't generalize well. 



Generalization: A Deep Dive into the Matrix..
The Manifold Hypothesis

A manifold  in an N dimensional space is a set of points which is isomophic to a lower-
dimensional space that is Euclidean, i.e., is continuous and has a notion of "distance." 

Ex 1:  A curved line is literally in 2 D, but can be mapped 1-to-1 (isomophic) to a 1 D 
line:

Ex 2: A crumpled piece of paper is 3 D, but is                                  Ex 3:
isomophic to a 2D (flat) piece of paper:



The Manifold Hypothesis is "that many high-dimensional data sets that occur in the real 
world actually lie along low-dimensional latent manifolds inside that high-dimensional 
space. As a consequence of the manifold hypothesis, many data sets that appear to 
initially require many variables to describe, can actually be described by a comparatively 
small number of variables, likened to the local coordinate system of the underlying 
manifold. It is suggested that this principle underpins the effectiveness of machine 
learning algorithms in describing high-dimensional data sets by considering a few 
common features." -Wikipedia

Your model is searching in a high-dimensional space 
(= number of parameters attached as weights to 
neurons) for a representation of the data (lower 
dimensional manifold). The spaces are continuous 
and have a notion of distance, which are intrinsic to 
the gradient descent algorithm: 

Generalization: A Deep Dive into the Matrix..



Generalization: A Deep Dive into the Matrix..



Generalization: Underfitting and Overfitting
Overfitting is not a sign that something is wrong with your model, in fact, it shows that 
your model has sufficient power to represent the patterns that characterize the true 
"meaning" of the data.  You just have to find ways to control this awesome power. 

Chollet, p.138: "The first big milestone of a machine learning project: getting a model 
that has some generalization power (it can beat a trivial baseline) and that is able to 
overfit."  p.141: "Remember that it should always be possible to overfit." 



Improving Generalization
Improving generalization can be accomplished by various techniques. 

Getting more data, improving your data:  more data is almost always better; make sure 
there are minimal labeling errors, reconsider your data normalization. 

If you can not get more data, consider data augmentation: manipulating your existing 
data in ways that produce different samples with the same essential information. 

Unfortunately, data augmentation is a 
little tricky in NLP: how do you create 
new documents or text that has the same 
"essential information"?

Typical approaches:  replace words by 
synonyms, translate to another language, 
then back, etc.  (not very satisfying). 



Improving Generalization
Reconsider your choice of architecture:  Add more layers, or fewer, or of different widths. 
Consider starting with wider layers, and getting narrower as you go deeper. 
Consider different kinds of layers better suited to your data (this works better with images than in 
NLP).  Google around to see what others have done successfully with similar data.

Tuning hyperparameters: Play with the hyperparameters, including type of optimizer, the learning 
rate, and the batch size. 

Better feature engineering:  Use domain knowledge about the data, and experience with the model 
you are using to better represent the data. Tools can help with feature selection (find out which 
features are making the most difference). 

 Example:  What kind of word vector?

TF?     TF-IDF?     DIY embeddings?

Glove embeddings?      etc. ....

In some simple cases, we can observe which 
features were most important; here is a Naive 
Bayes classifier for identifying gender for 
names:



Improving Generalization

Early Stopping:  Stop training when a robust fit is achieved. This can often be done 
automatically by setting a parameter in your model.  An elegant method is to save the 
best model after every K epoches, then refer back after you've gone too far....

Here is a naive example of early stopping, which does not do so well:



Improving Generalization

Early Stopping:  Stop training when a robust fit is achieved. This can often be done 
automatically by setting a parameter in your model. 

Tuning the early stopping callback results in better results:



Improving Generalization
Regularization:  Various techniques which "actively impede the model's ability to fit 
perfectly to the training data, with the goal of making the model perform better during 
validation."   The model is simpler, more "regular."

Reduce model size (but not too small):



Improving Generalization
Regularization:  Various techniques which "actively impede the model's ability to fit 
perfectly to the training data, with the goal of making the model perform better during 
validation."   The model is simpler, more "regular."

Weight Regularization:  Place limits on how large the weights in the model can become, 
so that the model is forced to be simpler (having fewer possibilities of weights).
There are two flavors:



Improving Generalization
Regularization:  Various techniques which "actively impede the model's ability to fit perfectly to 
the training data, with the goal of making the model perform better during validation."   The 
model is simpler, more "regular."

Adding Dropout:  Dropout is applied to a layer, and is very simple:  with some probability p, set 
each parameter in a layer to 0.0:

This is one of the weirdest great ideas in Deep Learning: it seems like it can't possibly help, but 
it is one of the most effective and most common ways to regularize your model.


