CS 505: Introduction to
Natural Language Processing
Wayne Snyder

Boston University

Lecture 12: Deep Learning: Evaluating Classifiers; Generalization

Recall: Supervised Machine Learning Workflow

Parameters l
O C— \/glidation

P ! ‘

Raw Data yourated ML
Data Preparation Data - XTraining — Algorithm —p Results Y
XTesting 1
\ Evaluation
Training Validation Testing
Performance
Metric u

Training involves multiple phases of evaluation with a
validation set to find optimal values for the hyperparameters.

Multiclass and Multilabel Classification

In Multiclass Classification, we have more than 2 labels, and our task is to assign a single
label to each sample:

In Multilabel Classification, we have more than 2 labels, and our task is to assign any
appropriate labels (not just one):

Binary Classification Multiclass Classification

Multilabel Classification

4 \ 4 y Y Y y A Y ¢
Dog Not Dog Dog Cat Bus Plant Dog Cat Bus Plant
0.9 0.1 0.5 0.09 0.01 0.4 0.8 0.2 0.04 0.7

Let's look at an example of multiclass classification, using the MNIST handwritten digits
database....

> B <@ 0 4+

¢ m ¢

il

Binary Classification

Example: Spam or Not Spam?

kaggle

Create

Home
Competitions
Datasets
Models
Code
Discussions
Learn

More

Your Work

VIEWED

The Complete Works o...

Q_ search

enron email classification using machine learning

Python - data cleaning enron email dataset, enron email classification using machine learning

Notebook Input Output Logs Comments (0)

6.3s

pandas

Decision Tree NLTK Email and Messaging SVM

Enron Email Classification using Machine Learning

you can find data cleaning notebook of enron email dataset at:

https://www.kaggle.com/ankur561999/data-cleaning-enron-email-dataset

v 3 enroni

>

-—

=20 ham
.. README.txt

enronl.zip
enron2.zip
enron3.zip
enron4.zip
enronb5.zip
enron6.zip

Today, 3:06 PM T 1.8 MB
4/18/20, 1:18 PM 1 827 KB
10/29/05, 4:06 PM 430 bytes
Today, 3:06 PM 1 985 KB
4/19/20, 2:05 PM 5.4 MB
4/19/20, 2:04 PM 7.6 MB
4/19/20, 2:04 PM 8.9 MB
4/19/20, 2:06 PM 6.7 MB
4/19/20, 2:05 PM 6.4 MB
4/19/20, 2:05 PM 7.5 MB

Naive Bayes

Folder
Folder

text

Folder

ZIP archive
ZIP archive
ZIP archive
ZIP archive
ZIP archive
ZIP archive

Dataset

N°9of Legitimate N°of Spam

Total

Enron 1
Enron 2
Enron 3
Enron 4
Enron 5
Enron 6

3,672
4,361
4,012
1,500
1,500
1,500

1,500
1,496
1,500
4,500
3,675
4,500

5,172
5,857
5,512
6,000
5,175
6,000

Total

Labels:

Notice that this data set is fairly well balanced:

16,545 17,171

1=Spam 0= Not Spam

51% Spam vs. 49% Not Spam

33,716

Multiclass Classification

The well-known MNIST dataset of handwritten digits is a classic multiclass problem.

> B ¥ ® -+

Q@ M

v

@

kaggle

Create

Home
Competitions
Datasets
Models

Code
Discussions
Learn

More

View Active Events

Q Search

o\
a HOJJAT KHODABAKHSH - UPDATED 4 YEARS AGO - 7

MNIST Dataset

The MNIST database of handwritten digits (http://yann.lecun.com)

DataCard Code (52) Discussion (0)

About Dataset

Context

MNIST is a subset of a larger set available from NIST (it's copied from http://yann.lecun.com/exdb/mnist/)

Content

The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples. .

Four files are available:

train-images-idx3-ubyte.gz: training set images (9912422 bytes)

train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)

t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)

How to read

See sample MNIST reader

Acknowledgements

New Notebook

& Download (23MB) JR” N

Usability ©
7.50

License
Data files © Original Authors

Expected update frequency
Not specified

SudeNT WP =0

Multiclass Classification

The MNIST digit database consists of 70,000 28x28 BW pixel images, stored as 28*28=784
floating-point numbers in the range [0..1]; labels are integers 0..9:

a(e) 10) 0 ()

707

a(8) 101

() 717 101

In [33]: print(training_images[0])

o

CC 0O OO0 OO OO0 0000000000000 00000000000000000000000000000000 0

.05882353 0.08235294

05882353
49019608

.54901963

.16862746 0.98039216 0.49019608

7176471 98039216 0.49019608

2

9882353 Note that the
array 1is sparse,

69411767

98039216 0.49019608

Shuffled Image Set [0] = 9

0 08627451 0.7176471 0.9882353 0.99607843 0.93333334 0.4117647]t iS mOStly O'S
.11372549 0.65882355 0.98039216
98039216 0.93333334 0.43529412
5
08627451 0.65882355 0.98039216 0.98039216 0.98039216 0.4117647
10
7176471 0.98039216
98039216 0.98039216 0.98039216
= 9882353 0.98039216 0.98039216 0.98039216
98039216
41960785 0.27450982

C 0 0000000000000 00O00000000000000000000000000000000000000O0O
C 0000 0000000000000 0000000000000000000000000000000000000O0 O
0 000 OO0 OO0 OO0 OO0 OO0 0000000000000 0000000000000000000000000
C 0P OO OO0 OO0 0000000000000 00000000000000000000000000O000000 0

0 000 OO0 OO0 OO0 OO0 0000000000000 00000000000000000000000000

Etc.

In [36]: print(train_labels[:100])

wou
o
S~ w
[GN}
[BN]
- W
o ©
o o
= O
< o
[t
o o

owo
N oo e
o
S)
RN
[
oww
N O
o
N U w
© o u
www
v w o
oo~
NN
o N
N o ®
» 0 o
oo v
© O »
o w» o
N o
0 =
w o =
= o N

5
8

Multilabel Classification

Multilabel classification is a very important problem in medical diagnosis and object
recognition in images:

Enhancing Medical Multi-Label Image
Classification Using PyTorch & Lightning

@ Vaibhav Singh Ld

JULY 11, 2023 — LEAVE A COMMENT

CNN Deep Learning Image Classification PyTorch PyTorch-Lightning

Plasma Membrane
Cytosol

Centrosome

Nucleoli fibrillar center -
Nuclear Speckles

Nuclear bodies

Nucleoli
Nucleoplasm
Golgi Apparatus

Change m Mitochondria

LearnOpenCV.com

Actual Class {

Evaluation of Classifiers: “It’s complicated!”
p

Precise evaluation of classifier performance is complex, even for

the simplest case of binary classification:

We have four different outcomes for predictions:

Binary Classification

True Label Prediction Type of Outcome
Dog Dog True Positive (TP) e
Not Dog Not Dog True Negative (TN) 0.2 9.1
Dog Not Dog False Negative (FN) [Type II error]
Not Dog Dog False Positive (FP) [Type I error]
Predicted Class
A B Intuitively, these make good sense:
Positive Negative . Lo
p o Accuracy is the percentage of all predictions
False Negative (FN) Sensitivity which were correct;
Positive True Positive (TP)
t t Tyl Nevee % o Precision is the percentage
e of positive predictions which were correct;
e pecificity . . .
Negative F“,'l‘ie if’j'tf‘m(ip) True Negative (TN) ™ o Sensitivity (or Recall or "true positive rate") is
L e (TN +FP) the percentage of the actual positives identified
Preclaton Negative Predictive Accuracy CorreCﬂy; and
TP Valwe o e T o Specificity (or "true negative rate") is the
(TP + FP) % percentage of the actual negatives identified

correctly.

Evaluation of Binary Classifiers (still complicated!)

5N
The idea of accuracy is fairly straight-forward: how many
did it get correct? This is the most common in NLP. T I e B
However, the others are useful in many circumstances Negai diceisndy e
where the cost of errors may be unacceptable: N T
(TPFP) (TNT:IF : (TP +TN + FP + FN)

o If positive = the patient has cancer, then a FN is disasterous, since you have missed
diagnosing a deadly disease, so we want to increase sensitivity;

o If positive = the patient does NOT have cancer, then a FP is disasterous, since again you
have missed diagnosing a deadly disease, so we want to increase precision,;

o If you are querying a database of documents, and positive = document retrieved, and you
want to retrieve all possible documents, then you need to increase recall (hence the name);

Precision and recall often in conflict: increasing one will decrease the other; therefore a
composite measure is often used, the "harmonic mean" of prediction and recall, which attempts

to equalize the error between these two:

2 X Precision X Recall
Precision + Recall

F| score =

For a very complete listing of metrics for confusion matrices, see:
https://en.wikipedia.org/wiki/Precision and recall#Definition (classification context)

https://en.wikipedia.org/wiki/Precision_and_recall

Evaluation of Binary Classifiers (still complicated!)

But even accuracy is not that simple!
Consider two classifiers with accuracy metrics as follows:
A. Accuracy of 4-way classification of blobs: 90%

B. Accuracy of 10-way classification of digits: 85%

Which is the more accurate classifier?

Evaluation of Binary Classifiers (still complicated!)
Consider two classifiers with accuracy metrics as follows:
A. Accuracy of 4-way classification of blobs: 90%

B. Accuracy of 10-way classification of digits: 85%
Alternately: Your

Which is the more accurate classifier? baseline model is
your model before
Answer 1: 90% > 85% A is more accurate training, assuming

parameters are

But wait! A baseline classifier which chooses randomly gets initialized randomly.

25% accuracy for A and 10% accuracy for B "

[Assuming equal distribution of classes — else it is the percentage of biggest class.]

Punchline:

Always compare your model with a suitable baseline model,
for example a random model which always chooses the largest class.

Evaluation of Binary Classifiers (still complicated!)
Example: Suppose you get the following results:

A. Accuracy of 4-way classification of blobs: 90%
B. Accuracy of 10-way classification of digits: 85%

Ok, how to precisely compare a baseline model?
Answer 2 (most common in ML): Measure improvement above baseline:

A improves on random (25%) by +65%:;
B improves on random (10%) by +75%, so B is a better model.

Answer 3: Measure improvement normalized to inaccuracy of baseline model:

accuracy — baseline accuracy

Cohen’s Kappa: & =

1.0 — baseline accuracy

. 9-0. 0.85 - 0.1
Now A wins: x(A) = (1)(9)_332 = 087 «k(B) = T0-01 - 0.83

Evaluation of Binary Classifiers (still complicated!)

Which is correct? Well, "it depends"! Statisticians have been arguing about the right way

to do this for at least a century, here is a recent paper which compares the principal
methods:

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Received April 20, 2021, accepted May 21, 2021, date of publication May 26, 2021, date of current version June 3, 2021.
Digital Object Identifier 10.1109/ACCESS.2021.3084050

The Matthews Correlation Coefficient (MCC) is
More Informative Than Cohen’s Kappa and Brier
Score in Binary Classification Assessment

DAVIDE CHICCO"’!, MATTHUS J. WARRENS“2, AND GIUSEPPE JURMAN 3

!Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
2Groningen Institute for Educational Research, University of Groningen, Groningen, The Netherlands
3Data Science for Health Unit, Fondazione Bruno Kessler, Trento, Italy

Corresponding author: Davide Chicco (davidechicco@davidechicco.it)

_ TP -TN—FP -FN
N A/(TP+FP)-(TP+FN)-(TN +FP)-(TN +FN)
(worst value = —1; best value = +1)

MCC

ML people seem to like the simplicity of Answer 2 : percent improvement over baseline
model which always chooses the largest class.

Evaluation of Binary Classifiers (still complicated!)
Quick Check:
Suppose you have a spam/not spam binary classification task, but
your data set 1s heavily unbalanced: 30% is spam, and 70% is not spam.
You train two different models, A gets 88% accuracy and B gets 92%.

How much better 1s B than A?

Evaluation of Binary Classifiers (still complicated!)
Quick Check:
Suppose you have a spam/not spam binary classification task, but
your data set 1s heavily unbalanced: 30% is spam, and 70% is not spam.
You train two different models, A gets 88% accuracy and B gets 92%.
How much better 1s B than A?

A baseline model would simply say that all samples are not spam, and
would have 70% accuracy.

Standard answer: B is 22% above the baseline, and A 1s 18% above.

This doesn't sound that great, compared with 92% for your best model!

You can also see why balanced data sets are preferred!

Evaluation of Multiclass Classifiers (yup, complicated!)
Large Confusion Matrices

If you are doing multiclass classification, you can extend the confusion matrix to have as
many rows and columns as the number of classes.

Here is a simple example of a large Confusion Matrix showing how two strings match up
(as 1f each character were a label!):

>>> reference = 'This is the reference data. Testing 123. aoaeoeoe'

>>> test = 'Thos iz_the rifirenci data. Testeng 123. aoaeoeoe'
int(Conf ionMatri f , test
LI 28T acdetshinorsts | The same measures are used as
T SOk, St Sttt A) o . .
|<8>. L e e e e e e | in binary classification:
- - T |
1 | i a€1%0 o & « o a & & & & & & & & & & & |
R R | Accuracy = % correct
3 | e+ o€IPL 4 4 4 s b e s s e e s e |
Pl oo s o s a €2>. i i i s W s e e ek Ak |
[T O €aPs o 4 ¢ o s o o o 6 5 & o | 11] ;
A o, T T Esaa e | Sensitivity and specificity are
: I -------- €A . ¢ v 4 o0 v e s e i the average for each row.
......... €1>. « ¢« ¢ « ¢ ¢ s & & &
@ | & s 65 %8 & v a <6>. < |
£] ¢ o o ¢ 6 6 6« o & a A%e o o & & & & &
=3 ool s, L ana g | Recall and NPV are the
d R R R R S, S | average for each column.
2] o o 6 ¢ 6 64 o o a 1 .o €12, 1 4 o o o |
- [€2>. o o s |
O | ¢ ¢ o ¢ o ¢ 0 a0 e 0o o o <3>. . . |
T T T T T Y <>, . |
B | o o 4 ¢ o % 4 4 6 6 s a8 e s e s <2>. 1 |
S [A N T E N R <3>. |
X | o o ¢ 4 a8 4 6 6 8 & 88 o & & a s & @ <.>|

(row = reference; col = test)

Evaluation of Multiclass Classifiers (yup, complicated!)
Large Confusion Matrices

These displays can help you to understand your data and how your model is performing
with respect to individual samples.

Here is a confusion matrix for the MNIST digit-recognition task:

Confusion Matrix

90 Classification report rebuilt from confusion matrix:

precision recall fl-score support
80

0 1.00 0.99 0.99 88
1 0.99 0.97 0.98 91
2 0.99 0.99 0.99 86
3 0.98 0.87 0.92 91
4 0.99 0.96 0.97 92
_ 5 0.95 0.97 0.96 91
2 6 0.99 0.99 0.99 91
= 7 0.96 0.99 0.97 89
S 8 0.94 1.00 0.97 88
a 9 0.93 0.98 0.95 92
accuracy 0.97 899
macro avg 0.97 0.97 0.97 899
weighted avg 0.97 0.97 0.97 899

Predicted label

Generalization and Overfitting

Generalization — the ability of a NN to learn the patterns in a data set so
as to perform well on data it has never seen — is the most important goal
in developing deep learning models.

. ® o 0 . © 50/
The problem is overfitting — the NN is starting to "memorize" the training O o 0® e °© o 8
. OO0/ 0O o 00 O g+ 0®
set without learning the most important patterns which characterize the o AP %0 e ° %P,
.. : .) ° CHL PR
essential information present in the data. o ° *e% * . ° 0le®

Overtfitting can be seen when the training loss goes down, but the validation
loss goes up. In general, you will see the validation accuracy peak at some
epoch and then goes down (generally not as noticably as the rise in the
validation loss):

....... - Training curve
Training and validation loss
Loss i = == Validation curve
val S . 020
all€ | %\ Underfitting
..\ 015
.s.\ 5 010
é 005
A\ .
..\ X o am0d | essssssmssstuta s s o s e s G e s e e
"\ Overfitting i 3 » pa p3 ® 1%
A A i Epochs
gt I oot = Training and validation accuracy
\ Robust ﬁt ’/” e R el e el e e
\.\ P —— - 099 .-'.
................ 098 .
.................................... Z 097 /\/\/\W’-

Training time 0ss

094 * Taining acc

vos — Validation acc

0 2 0 &0 80 100
Epochs

Best Validation Accuracy: 0.9813 at epoch 40

Figure 5.1 Canonical overfitting behavior

Generalization: Overfitting

The problem is that a NN can learn ANY data set you give it, essentially by
memorizing the exact training set. Here is a dramatic example: we randomly
permute the labels, so that there 1s no correspondence between data and labels.

The model continues to "learn" the training set, but the validation accuracy remains
around the baseline of 10%.

Training and validation loss

« Taining loss

40 1 — validation loss
35
8 shuffled indices = np.random.permutation(num data_instances) 30
9 shuffled indices2 = np.random.permutation(num data_instances) 9
10 3
. . . . 25
11 images = images[shuffled_indices]
12 labels = labels[shuffled_indices2] 20
13
15
0 10 20 30 40 50
Epochs
Training and validation accuracy
* Taining acc oo ®
0.5 { — Validation acc _ps
....
- i
In [37]: 1 model.evaluate(testing_images, randint(10,size=len(testing_labels)), batch_size = 128) 04 Y
>
110/110 [] - 0s 2ms/step - loss: 4.1812 - accuracy: 0.1021 §
o 03
Out[37]: [4.181239128112793, 0.10207142680883408] B
0.2
28
0 10 20 30 40 50

Epochs

Best Validation Accuracy: 0.1139 at epoch 0

Generalization: Overfitting

Overfitting is often due to data which i1s

o Noisy (non-data, ambigious, or outliers)

o Mislabeled

o Or has rare features or spurious correlations.

Noisy Data in MNIST: Mislabeled data in MNIST:

Label: 9

Figure 5.3 Mislabeled MNIST training samples

Area of uncertainty

o 4 o s o
O oo @ .O PY © oo o) ,60_;.
5 ® O~ @ [J
O O oO [% ® @ .0
0) O b ® e e
O O O ol @ g
0 0.~ O 0o ‘e [}
0O 9 "o 0 OLeQ " ee
o ol o o 0..-00: ¢ o
O e /e o O/ e
° ® ® o ‘. 2. ® o
e) ox) o - Oe

Figure 5.5 Robust fit vs. overfitting giving an ambiguous area of the feature space

Generalization: Overfitting

Overfitting is often due to data which i1s
o Noisy (non-data, ambigious, or outliers)
o Mislabeled

o Or has rare features or spurious correlations.
Rare features

If your data contains "one-off" features (e.g., a "Getty Images" logo in one image, or
a unique or misspelled word in an email), the NN will learn to associate that feature
with its label — it is overfitting!

Spurious Correlations

This 1s actually worse—and more common—than rare features. A word may occur
100s of time in movie reviews, but by a statistical fluke, it occurs in 58% of the
positive reviews, and 42% of the negative reviews. The NN will give this word
undue weight in learning the data set, and it won't generalize well.

Generalization: A Deep Dive into the Matrix..

The Manifold Hypothesis

A manifold in an N dimensional space is a set of points which is isomophic to a lower-
dimensional space that is Euclidean, i.e., is continuous and has a notion of "distance."

Ex 1: A curved line is literally in 2 D, but can be mapped 1-to-1 (isomophic)toa 1 D
line:

Ex 2: A crumpled piece of paper is 3 D, but is Ex 3:
isomophic to a 2D (flat) piece of paper: M&bius strip

Figure 5.9 Uncrumpling a
complicated manifold of data

Generalization: A Deep Dive into the Matrix..

The Manifold Hypothesis is "that many high-dimensional data sets that occur in the real
world actually lie along low-dimensional latent manifolds inside that high-dimensional
space. As a consequence of the manifold hypothesis, many data sets that appear to
initially require many variables to describe, can actually be described by a comparatively
small number of variables, likened to the local coordinate system of the underlying
manifold. It is suggested that this principle underpins the effectiveness of machine
learning algorithms in describing high-dimensional data sets by considering a few
common features." -Wikipedia

Your model is searching in a high-dimensional space
(= number of parameters attached as weights to
neurons) for a representation of the data (lower Original ltent space "
dimensional manifold). The spaces are continuous =7
and have a notion of distance, which are intrinsic to
the gradient descent algorithm:

Sparse sampling: the @ Dense sampling: @
model learned doesn’t the model learned

match the latent approximates the
space and leads to latent space well,
incorrect interpolation. and interpolation

leads to generalization.

NN ’ ' l’ll %
O ONMUITTTTTRORS
NN

Figure 5.11 A dense sampling of the input space is necessary in order to learn a model
capable of accurate generalization.

Generalization: A Deep Dive into the Matrix..

Before training:
the model starts
with a random initial state.

®@ _©
O'g oo
l| ," ‘ '.\
6’99'. ’!?",:
GO~ o9€®
@ .
O™"0

Beginning of training:
the model gradually
moves toward a better fit.

Further training: a robust
fit is achieved, transitively,
in the process of morphing

the model from its initial

state to its final state.

O Q-
© 020 &
AL XL
OO\O\....
O 0. @

Test time: performance
of robustly fit model
on new data points

0 0."® e
Oig®
O-ie) ®
000 9 @
O Ox\.

Final state: the model
overfits the training data,
reaching perfect training loss.

~

-~

Test time: performance
of overfit model
on new data points

-
-
- ’
’
@
‘\ e Y
-~

Sew

.
Oa®.a @
’ .
Ol R
'
[

OOO‘*~?.
o O @

-
.
.

B

Figure 5.10 Going from a random model to an overfit model, and achieving a robust fit as an intermediate state

Generalization: Undetfitting and Ovetfitting

Overfitting is not a sign that something is wrong with your model, in fact, it shows that

your model has sufficient power to represent the patterns that characterize the true
"meaning" of the data. You just have to find ways to control this awesome power.

Chollet, p.138: "The first big milestone of a machine learning project: getting a model
that has some generalization power (it can beat a trivial baseline) and that is able to
overfit." p.141: "Remember that it should always be possible to overfit."

------- - Training curve
Loss - === \alidation curve

“
value | %\ Underfitting
b

§ Overfitting e
.\. L

N il
‘-_‘\ Robustft ~ __ _———"
“ C—_—

—
—
—

Training time

Figure 5.1 Canonical overfitting behavior

Improving Generalization

Improving generalization can be accomplished by various techniques.

Getting more data, improving your data: more data is almost always better; make sure
there are minimal labeling errors, reconsider your data normalization.

If you can not get more data, consider data augmentation: manipulating your existing
data in ways that produce different samples with the same essential information.

Unfortunately, data augmentation is a
little tricky in NLP: how do you create
new documents or text that has the same
"essential information"?

Typical approaches: replace words by
synonyms, translate to another language,
then back, etc. (not very satisfying).

Improving Generalization

Reconsider your choice of architecture: Add more layers, or fewer, or of different widths.
Consider starting with wider layers, and getting narrower as you go deeper.

Consider different kinds of layers better suited to your data (this works better with images than in
NLP). Google around to see what others have done successfully with similar data.

Tuning hyperparameters: Play with the hyperparameters, including type of optimizer, the learning
rate, and the batch size.

Better feature engineering: Use domain knowledge about the data, and experience with the model
you are using to better represent the data. Tools can help with feature selection (find out which
features are making the most difference).

Example: What kind of word vector? In some simple cases, we can observe which
features were most important; here is a Naive

TF? TF-IDF? DIY embeddings? Bayes classifier for identifying gender for
names:

Glove embeddings? etc.

Most Informative Features
suffix2
suffix2
suffix2
suffix3
suffix2
suffix2
suffix2
suffix3
suffix3
suffix2
suffix2
suffix2
suffix2
suffix2 'rt' male : female
suffix3 ‘ard’ male : female
suffix2 'os' male : female
suffix3 = 'nne’ female : male

100.3 : 1.
77.0 :

'na’ female : male
'la’' female : male
‘ia' female : male
'son' male : female
'1ld’ male : female
‘sa’ female : male
‘us’ male : female
‘ana’ female : male
'tta' female : male
'ta' female : male
'rd' male : female
'ra’ female : male
'do’ male : female

41.3 : 1.
36.5 : 1.

34.8 : 1.
29.6 :
25.7 : 1.
25.7 :
25.7 : 1.
25.2 : 1.
25.1 : 1.
23.8 : 1.
22.5 :
21.0 : 1.
20.4 : 1.
20.1 : 1.

L (| | | | | N 1 Y
L | | | (| {1 | O 1 1}
FRRERRPRRRERRRERRRERRBRRPRRBPB R
OCO0OO0OO0CO0OO0OO0OO0OO0OO0O0O0O0O0 OO O

Improving Generalization

Early Stopping: Stop training when a robust fit is achieved. This can often be done
automatically by setting a parameter in your model. An elegant method is to save the
best model after every K epoches, then refer back after you've gone too far....

Here is a naive example of early stopping, which does not do so well:

Training and validation loss
0.250
1 from tensorflow.keras.callbacks import EarlyStopping 0225 = :;::;‘,::,
2 early stopping = BarlyStopping() .
custom early stopping = EBarlyStopping(v
monitor='val accuracy', 0175
patience=8, § 0150
min_delta=0.001, 9
mode='max 0125
) 0.100
007
11 model = keras.Sequential((00350 . .) : . X
layers.Dense(512,activation="relu"), 10 15 20 25 10 a5 a0
layers.Dense(10,activation='softmax’) Epechs
i Traming and validation accuracy
model.compile(optimizer = 'rmsprop’, * Taining acc
; - ; 096 { = Validation acc
loss = 'sparse categorical crossentropy',
metrics = ['accuracy')) a8
0 history = model.fit(training_ images, Z 5o
training labels, H
verbose= 0, 4 pg
epochs=50,
batch_sizewéd, 094
callbacks~(early stopping],
validation dataw(validation_ images,validation labels)) 093
10 15 20 25 30 35 0
display results(history) Epcchs
model.evaluate(testing images, testing labels, batch size = 12B8)
Best Validation Accuracy: 0.9749 at epoch 2
110/110 [] = 08 lms/step - loss: 0.1168 - accuracy: 0.9689

[0.11679539084434509, 0.9688571691513062)

Improving Generalization

Early Stopping: Stop training when a robust fit is achieved. This can often be done
automatically by setting a parameter in your model.

Tuning the early stopping callback results in better results:

from tensorflow.keras.callbacks import EarlyStopping
early stopping = EarlyStopping()
custom early stopping = EarlyStopping(

monitor='val accuracy',

patience=8,

min delta=0.001,

mode='max

model = keras.Sequential((
layers.Dense(512,activation="relu"),
layers.Dense(10 ,activation='softmax’)

n

model.compile(optimizer = 'rmsprop’,
loss = 'sparse categorical crossentropy',
metrics = ['accuracy'))

history = model.fit(training images,
training labels,
verbose= 0,
epochs=50,
batch_sizew=éd,
callbacks=[custom early stopping],
validation dataw=(validation images,validation la

display results(history)
model.evaluate(testing images, testing labels,batch size =~ 12E8)

095

094

093

Training and validation loss

o Taining loss
Validation loss

R
' v
5 0 15 20
Epechs
Traming and validation accuracy
* TFanngacc ° * . * * * *

—— Validation scc .

v v v
5 10 15 2
Epcchs

Best Validation Accuracy: 0.9839 at epoch 13

1 model.evaluate(testing images, testing labels, batch size = 128)

110/110 [] = 08 lms/step - loss: 0.1475 - accuracy: 0.9807

6]: (0.14754530787467957, 0.9807142615318298)

Improving Generalization

Regularization: Various techniques which "actively impede the model's ability to fit
perfectly to the training data, with the goal of making the model perform better during
validation." The model is simpler, more "regular."

Reduce model size (but not too small):

-=~ Validation loss of original model i -==- Validation loss of original model
0.7 { — Validation loss of smaller model d 104 — Validation loss of larger model
0.6 0.8+
2 g
2 0.5 =
= 0.6
0.4 1
0.4 4
0.3 1
T T T T T T T T 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
2.5 5.0 7:5 10.0 12,5 15.0 17.5 20.0 Epochs

Epochs
Figure 5.18 Original model vs. much larger model on IMDB review

Figure 5.17 Original model vs. smaller model on IMDB review classification classification

Improving Generalization

Regularization: Various techniques which "actively impede the model's ability to fit
perfectly to the training data, with the goal of making the model perform better during
validation." The model is simpler, more "regular."

Weight Regularization: Place limits on how large the weights in the model can become,
so that the model is forced to be simpler (having fewer possibilities of weights).
There are two flavors:

= LI regularization—The cost added is proportional to the absolute value of the
weight coefficients (the L1 norm of the weights).

= L2 regularization—The cost added is proportional to the square of the value of the
weight coefficients (the L2 norm of the weights). L2 regularization is also called
weight decay in the context of neural networks. Don’t let the different name con-
fuse you: weight decay is mathematically the same as [.2 regularization.

Listing 5.13 Adding L2 weight regularization to the model -—~ Validation loss of original model 7
4

0.7 1 — Validation loss of L2-regularized model b
from tensorflow.keras import regularizers

model = keras.Sequential ([
layers.Dense (16, 0.6 -
kernel regularizer=regularizers.12(0.002),
activation="relu"),)
layers.Dense (16, S 0.5
kernel_regularizer=regularizers.12(0.002),
activation="relu"),
layers.Dense (1, activation="sigmoid") 0.4
1)
model.compile (optimizer="rmsprop",
loss="binary crossentropy", 0.3 1

metrics=["accuracy"]) T T T T T T T
& 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0

Epochs

Figure 5.19 Effect of L2 weight regularization on validation loss

Improving Generalization

Regularization: Various techniques which "actively impede the model's ability to fit perfectly to
the training data, with the goal of making the model perform better during validation." The
model is simpler, more "regular."

Adding Dropout: Dropout is applied to a layer, and is very simple: with some probability p, set
each parameter in a layer to 0.0:

0302|1500 00021500
50%
0601|00|03| dropout [0.60.1]0.0]03 Figure 5.20 Dropout applied to
= "2 an activation matrix at training
0219|0312 00190300 time, with rescaling happening
0710511000 071000000 during training. At test time the
activation matrix is unchanged.

This is one of the weirdest great ideas in Deep Learning: it seems like it can't possibly help, but
it 1s one of the most effective and most common ways to regularize your model.

usung 5.15 Addlng dmwut to the IMDB model —-== Validation loss of original model v

. 0.7 1 — Validation loss of dropout-regularized model /
model = keras.Sequential ([S

layers.Dense (16, activation="relu"), /
layers.Dropout (0.5)

layers.Dense (16, activation="relu"), "
layers.Dropout (0.5), 805+
layers.Dense (1, activation="sigmoid")

1)
0.4
model.compile (optimizer="rmsprop",

loss="binary crossentropy",
metrics=["accuracy"])
history dropout = model.fit(
train_data, train labels,
epochs=20, batch size=512, validation split=0.4)

25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

Figure 5.21 Effect of dropout on validation loss

