
CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 12: Deep Learning: Evaluating Classifiers; Generalization

Recall: Supervised Machine Learning Workflow

Data
Preparation

Raw
Data

Curated
 Data Results Y

Parameters
 Θ

X

XTesting

XTraining

Validation

ML
Algorithm

Training involves multiple phases of evaluation with a
validation set to find optimal values for the hyperparameters.

XValidation

Evaluation

Performance
Metric 𝜇

Multiclass and Multilabel Classification

In Multiclass Classification, we have more than 2 labels, and our task is to assign a single
label to each sample:

In Multilabel Classification, we have more than 2 labels, and our task is to assign any
appropriate labels (not just one):

Let's look at an example of multiclass classification, using the MNIST handwritten digits
database....

Binary Classification
Example: Spam or Not Spam?

Labels: 1 = Spam 0 = Not Spam

Notice that this data set is fairly well balanced:

 51% Spam vs. 49% Not Spam

Multiclass Classification
The well-known MNIST dataset of handwritten digits is a classic multiclass problem.

Multiclass Classification
The MNIST digit database consists of 70,000 28x28 BW pixel images, stored as 28*28=784
floating-point numbers in the range [0..1]; labels are integers 0..9:

Note that the
array is sparse,
it is mostly 0's.

Etc.

Multilabel Classification
Multilabel classification is a very important problem in medical diagnosis and object
recognition in images:

Evaluation of Classifiers: “It’s complicated!”

Precise evaluation of classifier performance is complex, even for
the simplest case of binary classification:

We have four different outcomes for predictions:

True Label Prediction Type of Outcome
 Dog Dog True Positive (TP)
 Not Dog Not Dog True Negative (TN)
 Dog Not Dog False Negative (FN) [Type II error]
 Not Dog Dog False Positive (FP) [Type I error]

Intuitively, these make good sense:

o Accuracy is the percentage of all predictions
which were correct;

o Precision is the percentage
of positive predictions which were correct;

o Sensitivity (or Recall or "true positive rate") is
the percentage of the actual positives identified
correctly; and

o Specificity (or "true negative rate") is the
percentage of the actual negatives identified
correctly.

Evaluation of Binary Classifiers (still complicated!)

o If positive = the patient has cancer, then a FN is disasterous, since you have missed
diagnosing a deadly disease, so we want to increase sensitivity;

o If positive = the patient does NOT have cancer, then a FP is disasterous, since again you
have missed diagnosing a deadly disease, so we want to increase precision;

o If you are querying a database of documents, and positive = document retrieved, and you
want to retrieve all possible documents, then you need to increase recall (hence the name);

Precision and recall often in conflict: increasing one will decrease the other; therefore a
composite measure is often used, the "harmonic mean" of prediction and recall, which attempts
to equalize the error between these two:

For a very complete listing of metrics for confusion matrices, see:
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)

The idea of accuracy is fairly straight-forward: how many
did it get correct? This is the most common in NLP.

However, the others are useful in many circumstances
where the cost of errors may be unacceptable:

https://en.wikipedia.org/wiki/Precision_and_recall

But even accuracy is not that simple!

Consider two classifiers with accuracy metrics as follows:

 A. Accuracy of 4-way classification of blobs: 90%

 B. Accuracy of 10-way classification of digits: 85%

Which is the more accurate classifier?

Evaluation of Binary Classifiers (still complicated!)

Consider two classifiers with accuracy metrics as follows:

 A. Accuracy of 4-way classification of blobs: 90%

 B. Accuracy of 10-way classification of digits: 85%

Which is the more accurate classifier?

Answer 1: 90% > 85% A is more accurate

But wait! A baseline classifier which chooses randomly gets

 25% accuracy for A and 10% accuracy for B !!

[Assuming equal distribution of classes – else it is the percentage of biggest class.]

Punchline:

 Always compare your model with a suitable baseline model,
 for example a random model which always chooses the largest class.

Alternately: Your
baseline model is
your model before
training, assuming
parameters are
initialized randomly.

Evaluation of Binary Classifiers (still complicated!)

Example: Suppose you get the following results:

 A. Accuracy of 4-way classification of blobs: 90%
 B. Accuracy of 10-way classification of digits: 85%

Ok, how to precisely compare a baseline model?

Answer 2 (most common in ML): Measure improvement above baseline:

 A improves on random (25%) by +65%;
 B improves on random (10%) by +75%, so B is a better model.

Answer 3: Measure improvement normalized to inaccuracy of baseline model:

 Cohen’s Kappa:

Now A wins: k(A) =

Evaluation of Binary Classifiers (still complicated!)

Which is correct? Well, "it depends"! Statisticians have been arguing about the right way
to do this for at least a century, here is a recent paper which compares the principal
methods:

ML people seem to like the simplicity of Answer 2 : percent improvement over baseline
model which always chooses the largest class.

Evaluation of Binary Classifiers (still complicated!)

Quick Check:

 Suppose you have a spam/not spam binary classification task, but
 your data set is heavily unbalanced: 30% is spam, and 70% is not spam.

 You train two different models, A gets 88% accuracy and B gets 92%.

 How much better is B than A?

Evaluation of Binary Classifiers (still complicated!)

Quick Check:

 Suppose you have a spam/not spam binary classification task, but
 your data set is heavily unbalanced: 30% is spam, and 70% is not spam.

 You train two different models, A gets 88% accuracy and B gets 92%.

 How much better is B than A?

 A baseline model would simply say that all samples are not spam, and
 would have 70% accuracy.

 Standard answer: B is 22% above the baseline, and A is 18% above.

 This doesn't sound that great, compared with 92% for your best model!

 You can also see why balanced data sets are preferred!

Evaluation of Binary Classifiers (still complicated!)

Large Confusion Matrices

If you are doing multiclass classification, you can extend the confusion matrix to have as
many rows and columns as the number of classes.

Here is a simple example of a large Confusion Matrix showing how two strings match up
(as if each character were a label!):

Evaluation of Multiclass Classifiers (yup, complicated!)

The same measures are used as
in binary classification:

Accuracy = % correct

Sensitivity and specificity are
the average for each row.

Recall and NPV are the
average for each column.

Large Confusion Matrices

These displays can help you to understand your data and how your model is performing
with respect to individual samples.

Here is a confusion matrix for the MNIST digit-recognition task:

Evaluation of Multiclass Classifiers (yup, complicated!)

Generalization and Overfitting
Generalization – the ability of a NN to learn the patterns in a data set so
as to perform well on data it has never seen – is the most important goal
in developing deep learning models.

The problem is overfitting – the NN is starting to "memorize" the training
set without learning the most important patterns which characterize the
essential information present in the data.

Overfitting can be seen when the training loss goes down, but the validation
loss goes up. In general, you will see the validation accuracy peak at some
epoch and then goes down (generally not as noticably as the rise in the
validation loss):

The problem is that a NN can learn ANY data set you give it, essentially by
memorizing the exact training set. Here is a dramatic example: we randomly
permute the labels, so that there is no correspondence between data and labels.
The model continues to "learn" the training set, but the validation accuracy remains
around the baseline of 10%.

Generalization: Overfitting

Generalization: Overfitting
Overfitting is often due to data which is

o Noisy (non-data, ambigious, or outliers)
o Mislabeled
o Or has rare features or spurious correlations.

Noisy Data in MNIST: Mislabeled data in MNIST:

Generalization: Overfitting
Overfitting is often due to data which is

o Noisy (non-data, ambigious, or outliers)
o Mislabeled
o Or has rare features or spurious correlations.

Rare features

If your data contains "one-off" features (e.g., a "Getty Images" logo in one image, or
a unique or misspelled word in an email), the NN will learn to associate that feature
with its label – it is overfitting!

Spurious Correlations

This is actually worse—and more common—than rare features. A word may occur
100s of time in movie reviews, but by a statistical fluke, it occurs in 58% of the
positive reviews, and 42% of the negative reviews. The NN will give this word
undue weight in learning the data set, and it won't generalize well.

Generalization: A Deep Dive into the Matrix..
The Manifold Hypothesis

A manifold in an N dimensional space is a set of points which is isomophic to a lower-
dimensional space that is Euclidean, i.e., is continuous and has a notion of "distance."

Ex 1: A curved line is literally in 2 D, but can be mapped 1-to-1 (isomophic) to a 1 D
line:

Ex 2: A crumpled piece of paper is 3 D, but is Ex 3:
isomophic to a 2D (flat) piece of paper:

The Manifold Hypothesis is "that many high-dimensional data sets that occur in the real
world actually lie along low-dimensional latent manifolds inside that high-dimensional
space. As a consequence of the manifold hypothesis, many data sets that appear to
initially require many variables to describe, can actually be described by a comparatively
small number of variables, likened to the local coordinate system of the underlying
manifold. It is suggested that this principle underpins the effectiveness of machine
learning algorithms in describing high-dimensional data sets by considering a few
common features." -Wikipedia

Your model is searching in a high-dimensional space
(= number of parameters attached as weights to
neurons) for a representation of the data (lower
dimensional manifold). The spaces are continuous
and have a notion of distance, which are intrinsic to
the gradient descent algorithm:

Generalization: A Deep Dive into the Matrix..

Generalization: A Deep Dive into the Matrix..

Generalization: Underfitting and Overfitting
Overfitting is not a sign that something is wrong with your model, in fact, it shows that
your model has sufficient power to represent the patterns that characterize the true
"meaning" of the data. You just have to find ways to control this awesome power.

Chollet, p.138: "The first big milestone of a machine learning project: getting a model
that has some generalization power (it can beat a trivial baseline) and that is able to
overfit." p.141: "Remember that it should always be possible to overfit."

Improving Generalization
Improving generalization can be accomplished by various techniques.

Getting more data, improving your data: more data is almost always better; make sure
there are minimal labeling errors, reconsider your data normalization.

If you can not get more data, consider data augmentation: manipulating your existing
data in ways that produce different samples with the same essential information.

Unfortunately, data augmentation is a
little tricky in NLP: how do you create
new documents or text that has the same
"essential information"?

Typical approaches: replace words by
synonyms, translate to another language,
then back, etc. (not very satisfying).

Improving Generalization
Reconsider your choice of architecture: Add more layers, or fewer, or of different widths.
Consider starting with wider layers, and getting narrower as you go deeper.
Consider different kinds of layers better suited to your data (this works better with images than in
NLP). Google around to see what others have done successfully with similar data.

Tuning hyperparameters: Play with the hyperparameters, including type of optimizer, the learning
rate, and the batch size.

Better feature engineering: Use domain knowledge about the data, and experience with the model
you are using to better represent the data. Tools can help with feature selection (find out which
features are making the most difference).

 Example: What kind of word vector?

TF? TF-IDF? DIY embeddings?

Glove embeddings? etc.

In some simple cases, we can observe which
features were most important; here is a Naive
Bayes classifier for identifying gender for
names:

Improving Generalization

Early Stopping: Stop training when a robust fit is achieved. This can often be done
automatically by setting a parameter in your model. An elegant method is to save the
best model after every K epoches, then refer back after you've gone too far....

Here is a naive example of early stopping, which does not do so well:

Improving Generalization

Early Stopping: Stop training when a robust fit is achieved. This can often be done
automatically by setting a parameter in your model.

Tuning the early stopping callback results in better results:

Improving Generalization
Regularization: Various techniques which "actively impede the model's ability to fit
perfectly to the training data, with the goal of making the model perform better during
validation." The model is simpler, more "regular."

Reduce model size (but not too small):

Improving Generalization
Regularization: Various techniques which "actively impede the model's ability to fit
perfectly to the training data, with the goal of making the model perform better during
validation." The model is simpler, more "regular."

Weight Regularization: Place limits on how large the weights in the model can become,
so that the model is forced to be simpler (having fewer possibilities of weights).
There are two flavors:

Improving Generalization
Regularization: Various techniques which "actively impede the model's ability to fit perfectly to
the training data, with the goal of making the model perform better during validation." The
model is simpler, more "regular."

Adding Dropout: Dropout is applied to a layer, and is very simple: with some probability p, set
each parameter in a layer to 0.0:

This is one of the weirdest great ideas in Deep Learning: it seems like it can't possibly help, but
it is one of the most effective and most common ways to regularize your model.

